99 research outputs found

    On Foveated Gaze Control and Combined Gaze and Locomotion Planning

    Get PDF
    This chapter presents recent research results of our laboratory in the area of vision an

    Stochastic Model Predictive Control with a Safety Guarantee for Automated Driving

    Full text link
    Automated vehicles require efficient and safe planning to maneuver in uncertain environments. Largely this uncertainty is caused by other traffic participants, e.g., surrounding vehicles. Future motion of surrounding vehicles is often difficult to predict. Whereas robust control approaches achieve safe, yet conservative motion planning for automated vehicles, Stochastic Model Predictive Control (SMPC) provides efficient planning in the presence of uncertainty. Probabilistic constraints are applied to ensure that the maximal risk remains below a predefined level. However, safety cannot be ensured as probabilistic constraints may be violated, which is not acceptable for automated vehicles. Here, we propose an efficient trajectory planning framework with safety guarantees for automated vehicles. SMPC is applied to obtain efficient vehicle trajectories for a finite horizon. Based on the first optimized SMPC input, a guaranteed safe backup trajectory is planned, using reachable sets. The SMPC input is only applied to the vehicle if a safe backup solution can be found. If no new safe backup solution can be found, the previously calculated, still valid safe backup solution is applied instead of the SMPC solution. Recursive feasibility of the safe SMPC algorithm is proved. Highway simulations show the effectiveness of the proposed method regarding performance and safety

    An online robot collision detection and identification scheme by supervised learning and Bayesian decision theory

    Get PDF
    This article is dedicated to developing an online collision detection and identification (CDI) scheme for human-collaborative robots. The scheme is composed of a signal classifier and an online diagnosor, which monitors the sensory signals of the robot system, detects the occurrence of a physical human-robot interaction, and identifies its type within a short period. In the beginning, we conduct an experiment to construct a data set that contains the segmented physical interaction signals with ground truth. Then, we develop the signal classifier on the data set with the paradigm of supervised learning. To adapt the classifier to the online application with requirements on response time, an auxiliary online diagnosor is designed using the Bayesian decision theory. The diagnosor provides not only a collision identification result but also a confidence index which represents the reliability of the result. Compared to the previous works, the proposed scheme ensures rapid and accurate CDI even in the early stage of a physical interaction. As a result, safety mechanisms can be triggered before further injuries are caused, which is quite valuable and important toward a safe human-robot collaboration. In the end, the proposed scheme is validated on a robot manipulator and applied to a demonstration task with collision reaction strategies. The experimental results reveal that the collisions are detected and classified within 20 ms with an overall accuracy of 99.6%, which confirms the applicability of the scheme to collaborative robots in practice

    An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models

    Get PDF
    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS

    Optimal Control for Indoor Vertical Farms Based on Crop Growth

    Full text link
    Vertical farming allows for year-round cultivation of a variety of crops, overcoming environmental limitations and ensuring food security. This closed and highly controlled system allows the plants to grow in optimal conditions, so that they reach maturity faster and yield more than on a conventional outdoor farm. However, one of the challenges of vertical farming is the high energy consumption. In this work, we optimize wheat growth using an optimal control approach with two objectives: first, we optimize inputs such as water, radiation, and temperature for each day of the growth cycle, and second, we optimize the duration of the plant's growth period to achieve the highest possible yield over a whole year. For this, we use a nonlinear, discrete-time hybrid model based on a simple universal crop model that we adapt to make the optimization more efficient. Using our approach, we find an optimal trade-off between used resources, net profit of the yield, and duration of a cropping period, thus increasing the annual yield of crops significantly while keeping input costs as low as possible. This work demonstrates the high potential of control theory in the discipline of vertical farming.Comment: This work has been accepted for presentation at IFAC World Congress 202

    Data-driven stochastic model predictive control

    Full text link
    We propose a novel data-driven stochastic model predictive control (MPC) algorithm to control linear time-invariant systems with additive stochastic disturbances in the dynamics. The scheme centers around repeated predictions and computations of optimal control inputs based on a non-parametric representation of the space of all possible trajectories, using the fundamental lemma from behavioral systems theory. This representation is based on a single measured input-state-disturbance trajectory generated by persistently exciting inputs and does not require any further identification step. Based on stochastic MPC ideas, we enforce the satisfaction of state constraints with a pre-specified probability level, allowing for a systematic trade-off between control performance and constraint satisfaction. The proposed data-driven stochastic MPC algorithm enables efficient control where robust methods are too conservative, which we demonstrate in a simulation example.Comment: This work has been submitted to the L4DC 2022 conferenc
    • …
    corecore